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ABSTRACT 

This paper deals with a method for the determination of diffusion coefficients in molten 
metals with a general temperature program and using DTA equipment. The method was 

tested by measuring the diffusion of “‘Ag into molten Zn, and was found to be effective, with 

an accuracy comparable with the commonly used method using the constant temperature of 
diffusion heating. 

INTRODUCTION 

In the present work attention is given to the study of diffusion in liquid 
metals applying the most frequently used capillary method (the thin layer 
method). A radionuclide of the element whose diffusion is to be investigated 
is placed above or below the sample in a capillary, and the specimens 
prepared in this way are submitted to a diffusion heating. The concentration 
distribution of the diffusing element along the specimen is determined either 
by the section or slot method [l-4]. 

During the diffusion heating there is a period of temperature rise from the 
melting point to the temperature of diffusion, the diffusion period and the 
period of decrease of temperature at the end of the experiment. The periods 
of temperature rise and decrease bring about a certain unexactness of 
experimental results. The mathematical correction of this negative effect is 
given in ref. 5. The aim of the present work is to show an advantageous 
possibility of using DTA equipment for the diffusion heating of specimens 
and the mathematical evaluation of experimental results for diffusion heat- 
ing with a general temperature program. A programmed course of tempera- 
ture can be used with these experiments. The method is applicable only if the 
common temperature dependence of diffusion coefficient, e.g., the Arrhenius 
relation, is known in advance. 
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THEORETICAL 

The equation of diffusion is expressed as 

W-G t) = D. a24x, t) 
at 3X2 

(1) 

where c(x, t) is the concentration of a diffusing component along the 
specimen, and D is the diffusion coefficient. If the thin layer method is used, 
the initial and boundary conditions are considered as 

c(x, 0) = co OlX<h 

0 h-=xsL 
(2) 

aC ac 
-I I 

=- 
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where h is the thickness of the layer and L is the length of the sample. With 
respect to ref. 5, the solution of this problem for a general temperature 
program T(t), D = f[T(t)], can be written as 

c(-w)=c, z ~ l h + 2 F, texp[ - ( y)lDet. t]cosy sin?) (3) 

where effective diffusion coefficient D,t is defined by the relation 

I&- t, =[‘nD[T(t)]dt 

where t, is the duration of diffusion heating. 
Let the function D[ T( t)] be expressed by the 

D [ T( t)] = Do - e-E/RT(r) 

(4 

Arrhenius equation 

(5) 

where E is the activation energy and Do is the frequency factor. 
If the temperature course T(t) is known from the experiment, then the 

effective diffusion coefficient D,t may be determined by substituting eqn. (5) 
into eqn. (4), supposing that E and Do are known. The case met in practice is 
contrary to this, which means that the values of Do and E are unknown, 
while the effective diffusion coefficients for different temperature courses 
T,(t) are experimentally given. For this purpose, we consider Do, as a formal 
function of variables E, Det, and T(t). On the basis of relations (5) and (4) 

Q;[E, Qfr, T(t)] = 
/ 
,.Fft’ tm’ 

,-E/RTl;(t)& 

0 

The unknown values of E and Do can be determined from relation (6) if the 
value of Def, and the corresponding temperature course T(t) are known for 
each experiment. In practice it is sufficient to find the points of intersection 
of functions log D,,(E). In this way the activation energy and frequency 
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factor D, characterizing diffusion can be determined simply and quickly if 

equipment for thermal analysis is used for diffusion heating. At the same 
time the beginning and the end of the experiment, i.e. the time interval t,i 
between melting and solidification of the sample, are determined by the 
DTA method. Obviously parameters D, and E can be found from the series 
of at least two measurements of different samples or, if the slot method is 
applied [3,4], from two measurements of the same sample after two diffusion 
heatings. If several measurements on different samples are realized, we can 
judge whether the used analytical expression of D(T) dependence is valua- 
ble. In a counter case the values of D,, and E from different couples of 
measurements are considerably different. 

The problem mentioned above was solved in a similar way to that 
presented in ref. 6 for the determination of kinetic parameters of chemical 
reactions. 

EXPERIMENTAL 

The method was proved when heterodiffusion of “‘Ag into molten Zn in 
the temperature range 420-830°C was investigated. The MOM derivato- 
graph (Hungary) was used for diffusion heating. Fragments of Ag weighing 
2-3 mg and containing the radioactive isotope “‘Ag, whose specific activity 
was 250 MBq, were placed on the bottom of AllO capillaries of 0.3 cm 
inner diameter; Zn cylinders of 2-3 cm height and 0.3 cm diameter were 
inserted above them. A series of capillaries with the samples (see Fig. 1) was 
placed in the derivatograph. The holder of the capillaries was made from a 
commonly used multiplate crucible. Examples of diffusion heating courses 
are shown in Fig. 2. The mean temperature F, for the ith experiment is 

Fig. 1. Scheme of the holder with samples. 1, Capillary; 2, molten metal; 3, plates with holes; 
4, Pt ring; 5, radionuclide; 6, multiplate crucible. 
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Fig. 2. Diffusion heating courses. 1, T= 723 K; 2, r= 899 K; 3, !?= 927 K. 

defined by the relation 

(7) 

where the time interval t,i represents the time from melting down the sample 
to solidification of sample that is determined from DTA. The values of t,, 
ranged from 6 X lo3 to lo4 s. After the termination of diffusion heating the 
concentration profile of “‘Ag was evaluated by the slot method [3] and the 
section method [7,8]. The values of effective diffusion coefficients II,r were 
obtained from least-squares fits to the theoretical regression function (3) by 
means of a computer. 

RESULTS AND DISCUSSION 

Experimental values of effective diffusion coefficients O,r and the corre- 
sponding mean temperatures of diffusion heating are listed in Table 1. The 
graphs of functions log Doi( E) for values of D,_r, from Table 1 are shown in 
Fig. 3, the corresponding courses of T(t) temperatures are given in Fig. 2. 
Furthermore, these functions were calculated for &, + ABef,, which char- 
acterize the effect of the dispersion of experimental values on the values of 
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TABLE 1 

Experimental values of diffusion coefficients of “‘A -+ Zn with a general temperature g 

program 

Mean 
temperature of 
diffusion heating 
r (“C) 

Duration of 

diffusion heating 

De, x 10’ (0.r + A&,)x lo5 

(cm* s-‘) (cm* SC’) 

450 9420 2.12 
2.17 

1.82 2.04kO.14 
1.91 
2.18 

626 11220 3.62 
3.83 
4.02 3.82kO.14 
3.68 
3.96 

654 8400 3.91 
4.69 
3.50 4.04 f 0.35 
4.14 

3.96 

Fig. 3. Graphs of functions In D,(E) for different temperatures T. 
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D, and E to be determined. We have to stress that this method is applicable 
only if the mean temperatures of diffusion heatings are widely different. In 
our case it means that the points of intersection of function D,,(E) were 
determined for pairs of temperatures T= 450°C r= 626°C and r= 450°C, 
r= 654°C. These points of intersection are marked by circles in Fig. 3 and 
the mean values of D, and E are 

D, f A& = (3.6 + 0.6) x 10e4 cm2 s-’ 

Ef A,!?= 4100 f 200 cal mole-’ 

Let us analyze the error of the method, i.e. calculate the maximum 
possible error of D,, and E determined for one point of intersection. The 
magnitude of error is first of all influenced by the dispersion of DeF values, 
then by the difference of mean temperatures r of individual experiments 
and by the magnitude of activation energy, E. 

Let us consider relation (6), and the effective temperature of experiment 
T,r, is defined as 

1 e-E/R%, = _ 
J 

I”,, ,-VU0 dt 
t 09 
mr 0 

Substituting eqn. (8) into eqn. (6) gives 

logD,,;(E)=logD,,,+& 
efr 

(9) 

Relation (9) represents the equation of a straight line in logarithmic coordi- 
nates with respect to variable E. Let us consider the dispersion of experimen- 
tally measured effective coefficients Def, _ + AD,,,. A system of straight lines is 
obtained for each experiment and their points of intersection characterize 
the error of the determined values of E and Do (see Fig. 3). A simple 
calculation from eqns. (9) and (8) results in an approximate relation 

AD,,, AD,,2 

g < + De,, + Def2 

E - - 1% Defl - lo!3 De,, 
( 10) 

which expresses the maximum inaccuracy in the determination of activation 
energy and frequency factor on the basis of inaccuracies in determining the 
Def, and mean temperature differences for two different experiments. If the 
value of AE is calculated from eqn. (10) supposing the value E f A E is 
known, then the value of D,, +_ AD,, can be determined from eqn. (9). 

In practice, the process is as follows. The value of AE/E is determined 
from relation (10) on the basis of experimental data; from the results of at 
least two experiments the activation energy E, is determined using the 
procedure mentioned above, and effective temperatures of individual experi- 
ments Tef, can be calculated from relation (8). In most practical cases the 
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effective temperatures are supposed to approach the mean temperatures T, 
defined by relation (7) (see ref. 5). 

Applying the results from Fig. 3 and the values from Table 1, the maxi- 
mum error A E/E = 2 1% can be calculated from relation ( 10) for the point of 
intersection of functions D,,(E) corresponding to the couple r= 654OC and 
r= 450°C and AE/E = 17% for the couple T= 450°C and r= 626°C. 

Substituting eqn. (5) into eqn. (10) gives 

Equation (11) expresses the influence of the difference between effective 
temperatures, the inaccuracy in the determination of Def, and the magnitude 
E, on the relative error AE/E. It is obvious that the greater the difference of 
effective temperatures and the magnitude of activation energy, E, the greater 
is the exactness of its experimental determination. 

When comparing the results of the present work with those obtained by 
the same capillary method with constant temperature of diffusion heating 
[9], i.e. Do = 2.5 X lop4 cm2 s-‘, and E = 3500 + 100 cal mole-‘, we can say 
that their accordance is acceptable considering that the activation energy of 
the studied system is very small. Its value for most molten metals ranges 
from lo4 to 2 X lo4 cal mole-‘, which means that the precision in determin- 
ing E can be 2.5-5 times greater if a similar ratio of effective temperatures of 
experiments is retained. 

CONCLUSIONS 

The theoretical analysis of diffusion coefficient determination in molten 
metals applying a capillary method with a general temperature program, and 
using DTA equipment has been presented in this work. The accuracy of this 
method increases with the magnitude of the activation energy E, the dif- 
ference of mean temperatures r, effective temperatures &,, and the exact- 
ness of the effective diffusion coefficient Derl for the temperature course 
7](t). The method has been tested by measurement of the diffusion of “‘Ag 
into molten Zn in the temperature range in which the Arrhenius equation 
holds. The results are in good accordance with the values presented in ref. 9 
where the classical process with constant temperature of diffusion heating 
was applied. The method is effective and its accuracy is comparable with the 
commonly used method with constant temperature of diffusion heating, 
especially for systems with higher activation energies. 



236 

REFERENCES 

1 P. KubiEek and T. PepIica, Int. Metall. Rev., (3) (1983). 
2 P. KubiEek and B. Wozniakova, Jad. Energ., 26 (1980) 4 1. 
3 P. KubiEek and B. Wozniakova, Jad. Energ., 29 (3) (1983). 
4 P. Kubikk and B. Wozniakova, Ann. Chim., Sci. Mater., 6 (1981) 387. 
5 P. KubiEek, Kovove Mater., XIII (1975) 16. 
6 P. KubiEek and J. LeSko, Thermochim. Acta, 31 (1979) 21. 
7 P. KubiEek, Czech. J. Phys. B, 25 (1975) 535. 

8 P. KubiEek, Trans. ISIJ, 22 (1982) 391. 
9 P. KubiEek and B. Wozniakova, to be published. 


